FAIRY LAGOON
ENTRANCE MANAGEMENT POLICY

Report Prepared for
Wollongong City Council
Document Control

<table>
<thead>
<tr>
<th>Version</th>
<th>Date</th>
<th>Author</th>
<th>Reviewer</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Name</td>
<td>initials</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Emma Maratea</td>
<td>ERM</td>
</tr>
<tr>
<td>1</td>
<td>December 2006</td>
<td>Louise Collier</td>
<td>LCC</td>
</tr>
<tr>
<td>2</td>
<td>December 2006</td>
<td>Louise Collier</td>
<td>LCC</td>
</tr>
<tr>
<td>3</td>
<td>February 2007</td>
<td>Louise Collier</td>
<td>LCC</td>
</tr>
<tr>
<td>4</td>
<td>April 2007</td>
<td>Louise Collier</td>
<td>LCC</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Emma Maratea / Tanja Mackenzie</td>
<td>ERM / TJM</td>
</tr>
</tbody>
</table>

This document is produced by Cardno Lawson Treloar Pty Ltd solely for the benefit of and use by the client in accordance with the terms of the retainer. Cardno Lawson Treloar Pty Ltd does not and shall not assume any responsibility or liability whatsoever to any third party arising out of any use or reliance by any third party on the content of this document.

It is the responsibility of the reader to verify the currency of the version number of this report. All subsequent releases will be made directly to the Client.

Controlled Document No (………..)
Uncontrolled Document
Table of Contents

1. **Introduction** ... 1
 - 1.1 Fairy Lagoon Entrance Management Policy .. 1
 - 1.2 Policy Context .. 1
 - 1.3 Aims and Objectives .. 2
 - 1.4 Limitations .. 2
 - 1.5 Area to Which This Policy Applies ... 3
 - 1.6 Definition of Terms ... 5
 - 1.7 Policy Statement .. 6

2. **Background** .. 7
 - 2.1 Lagoon Behaviour .. 7

3. **Alternatives for Entrance Management** ... 10
 - 3.1 Community Feedback .. 10
 - 3.2 Do Nothing Approach ... 10
 - 3.3 Mechanical Breakout .. 10
 - 3.4 Berm Height Management ... 11
 - 3.5 Access Path Alternatives .. 11

4. **Determination of Trigger Lagoon Water Level** .. 13
 - 4.1 Inundation .. 13
 - 4.2 Asset Assessment .. 14
 - 4.3 Historic Water Levels ... 14
 - 4.4 Recreation .. 14
 - 4.5 Rate of Rise ... 14
 - 4.6 Ocean Levels ... 16
 - 4.7 Flood Study ... 16
 - 4.8 Berm Height .. 16
 - 4.9 Trigger Level .. 17

5. **Lagoon Opening Procedure** ... 18
 - 5.1 Lagoon Opening Decision Making ... 18
 - 5.2 Responsibility for Opening ... 21
 - 5.3 Procedures ... 21
 - 5.4 Entrance Monitoring ... 22
 - 5.4.1 Mechanical Breakouts .. 22
 - 5.4.2 Unassisted Breakouts .. 22
 - 5.5 Entrance Berm Clearance .. 23

6. **Summary of Environmental Issues and Recommended Safeguards** 24

7. **Preliminary Cost Estimate** ... 26
8. RECOMMENDATIONS... 27
 8.1 Infrastructure and Monitoring Systems ... 27
 8.2 Review and Update of This Policy .. 27
 8.2.1 Climate Change ... 27
 8.3 Options for Increasing Trigger Levels ... 28

9. REFERENCES.. 30

LIST OF TABLES

Table 1 Summary of Environmental Issues and Recommended Safeguards 24
Table 2 Preliminary Cost Estimates (Capital and Recurrent Costs) 26

LIST OF FIGURES

Figure 1 Area to Which the Policy Applies
Figure 2 Definition of Terms
Figure 3 Selected Lagoon Inundation Extents
Figure 4 Rate of Rise of Fairy Lagoon Levels
Figure 5 Comparison of 1.6 mAHD and 2 mAHD Extent in Fairy Creek

ATTACHMENTS

ATTACHMENT A Contact List
ATTACHMENT B Entrance Opening Decision Making Flowchart
ATTACHMENT C Fairy Lagoon Entrance Opening Diagram
ATTACHMENT D Fairy Lagoon Entrance Breakout Monitoring Sheet
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>AHD</td>
<td>Australian Height Datum</td>
</tr>
<tr>
<td>ARI</td>
<td>Average Recurrence Interval</td>
</tr>
<tr>
<td>BOM</td>
<td>Bureau of Meteorology</td>
</tr>
<tr>
<td>CEMP</td>
<td>Contractors Environmental Management Plan</td>
</tr>
<tr>
<td>CLT</td>
<td>Cardno Lawson Treloar</td>
</tr>
<tr>
<td>DEC</td>
<td>Department of Environment and Conservation (now DECC)</td>
</tr>
<tr>
<td>DECC</td>
<td>Department of Environment Climate Change. This recently formed department has absorbed DNR, DEC and some Fisheries functions.</td>
</tr>
<tr>
<td>DNR</td>
<td>Department of Natural Resources (now DECC)</td>
</tr>
<tr>
<td>DPI</td>
<td>Department of Primary Industries</td>
</tr>
<tr>
<td>EEC</td>
<td>Endangered Ecological Community</td>
</tr>
<tr>
<td>ESCP</td>
<td>Erosion and Sediment Control Plan</td>
</tr>
<tr>
<td>HAT</td>
<td>Highest Astronomical Tide</td>
</tr>
<tr>
<td>ICOLL</td>
<td>Intermittently Closed and Open Lake or Lagoon</td>
</tr>
<tr>
<td>ILGW</td>
<td>Illawarra Lowlands Grassy Woodland</td>
</tr>
<tr>
<td>ISLW</td>
<td>Indian Spring Low Water</td>
</tr>
<tr>
<td>mAHD</td>
<td>Metres above Australian Height Datum</td>
</tr>
<tr>
<td>NSW</td>
<td>New South Wales</td>
</tr>
<tr>
<td>REF</td>
<td>Review of Environmental Factors</td>
</tr>
<tr>
<td>SOFF</td>
<td>Swamp Oak Floodplain Forest</td>
</tr>
<tr>
<td>SSFCF</td>
<td>Swamp Sclerophyll Forest on Coastal Floodplains</td>
</tr>
<tr>
<td>WCC</td>
<td>Wollongong City Council</td>
</tr>
</tbody>
</table>
1. **INTRODUCTION**

1.1 **Fairy Lagoon Entrance Management Policy**

This Entrance Management Policy describes the procedures and responsibilities for mechanical breakouts of the Fairy Lagoon entrance and the required response of authorities to unassisted breakouts.

1.2 **Policy Context**

State Rivers and Estuaries Policy

There are a number of State Government Policies and Guidelines supporting the management of estuaries in a manner that promotes the maintenance of natural processes. The objective of the NSW State Rivers and Estuaries Policy is to manage the rivers and estuaries of NSW in ways which:

- slow, halt or reverse the overall rate of degradation in their systems,
- ensure the long-term sustainability of their essential biophysical functions, and
- maintain the beneficial use of these resources.

The NSW Estuary Management Policy (1992) is a component policy of the NSW State Rivers and Estuaries Policy (1992) which advocates the sustainable use and management of estuaries through the production and implementation of Estuary Management Plans. An Estuary Management Committee was established by Wollongong City Council in 2003, to develop and implement Estuary Management Plans for Fairy, Towradgi and Hewitts/Tramway Creeks Estuaries.

The Estuary Management Manual recommends an eight-step process in order to implement an Estuary Management Plan, as follows:

1. Form an estuary management committee;
2. Assemble existing data (data compilation study);
3. Undertake an estuary processes study;
4. Undertake an estuary management study;
5. Prepare draft estuary management plan;
6. Public review of the draft plan;
7. Adopt and implement the estuary management plan; and
8. Monitor and review the management process as necessary.

The Fairy, Towradgi and Hewitts/Tramway Creeks Estuary Management Plan (Cardno Lawson Treloar, 2005a) has been adopted by Council and is now in the implementation and monitoring stages (Steps 7 and 8).

The development of an entrance management policy for Fairy Lagoon was an action recommended for implementation as part of the Estuary Management Plan (Cardno Lawson Treloar, 2005a).

Entrance Management Policy

Historically, Wollongong City Council Works Division has had an informal entrance management policy of opening the entrance of Fairy Lagoon when the water level reaches part way up the Sydney Water Corporation carrier which is suspended above the Creek immediately upstream of the Squires Way crossing. This opening has been in response to resident complaints largely associated with property inundation and fears of overfloor flooding. This level is of the order of 1.4 mAHD. The analysis of the maximum water levels
at the Fairy Creek gauge further upstream at Flinders Street show that the maximum water level generally has not exceeded 1.47 mAH which is consistent with the informal opening strategy previously employed.

This informal entrance management policy ceased in approximately 2003, when the estuary management committee was formed to consider the ecological effects of a mechanical breakout of the entrance. The development of a new policy was identified as an action in the Estuary Management Plan.

1.3 Aims and Objectives

The aim of this Policy is to provide Wollongong City Council, relevant State Government agencies and the community with a detailed procedure for the short- and long-term management of the Fairy Lagoon entrance.

The specific objectives of this Policy are to:

- Implement a management regime which is consistent with the principles of ecologically sustainable development that consider environmental, social and economic impacts.
- Outline the need, if any, to artificially open the lagoon, and the circumstances under which artificial opening should occur.
- Ensure that entrance opening follows as natural a regime as possible within the constraints of property inundation and flooding of infrastructure.
- Gain broad based community understanding and support for management of the lagoon entrance.
- Deter unauthorised opening of the lagoon.
- Streamline the decision-making and approval process in relation to artificial opening events.
- Provide a mechanism for review and update of this policy, when required
- Ensure the appropriate level of environmental assessment and consultation are undertaken before the lagoon is artificially opened.
- Clarify responsibilities and accountabilities in relation to artificially opening the lagoon.
- Specify when, where and how the lagoon should be artificially opened
- Detail the procedure for monitoring the lagoon entrance after it has opened.
- Provide a cost estimate for the entrance opening works.

Accompanying this Policy is a Review of Environmental Factors (REF), prepared in accordance with the requirements of the Environmental Planning and Assessment Act, 1979, for the mechanical opening of Fairy Lagoon. The objective of the REF is to detail the environmental impacts of artificially opening the lagoon, particularly on aquatic and fringing terrestrial habitats and associated fauna, and the safeguards necessary to mitigate any environmental impacts.

This Entrance Management Policy and the accompanying Review of Environmental Factors (Cardno Lawson Treloar, 2007) will be regularly reviewed and updated to incorporate new information and address the community and government’s changing needs.

1.4 Limitations

Opening of the entrance of the Lagoon will not prevent flooding of property and dwellings in many circumstances. For example, even if the entrance is fully open at the start of a large flood (i.e. it has recently been scoured by a preceding flood) there are existing dwellings that would be expected to be affected by flooding. The Policy aims to reduce (where possible) but not eliminate the impacts of flooding. Further, there may be circumstances (e.g. closed access roads, night, or dangerous sea conditions) where, despite its best
endeavours, Council cannot act to mechanically open the entrance of the lagoon at the levels indicated in this Policy.

The opening of the entrance during times of flood is only one of a range of floodplain management measures. It should not be considered in isolation as the overall solution to the flood problem.

1.5 **Area to Which This Policy Applies**

The study area comprises the tidal waterways, foreshores, the immediate surrounding open space and adjacent lands of Fairy Creek, including Cabbage Tree Creek and the Towradgi Arm. The limits of the study area are defined at its upstream reaches by the tidal limit (when the entrance is fully open) and the Fairy Meadow Beach at the downstream limit. The extent of the study area on the adjacent lands is defined by the 3.5 m AHD contour. This is considered to be beyond the maximum height that the berm could reach and therefore includes all potentially affected lands.

The main waterway (from the beach to just upstream of Squires Way) is referred to as Fairy Lagoon. Upstream of the Lagoon is referred to as Fairy Creek and Cabbage Tree Creek (south and north tributary creek respectively). The tributary to the north of the lagoon area is referred to as the Towradgi Arm.

The study area is shown in Figure 1.
Figure 1 Area to Which the Policy Applies
1.6 Definition of Terms

Figure 2 shows the definition of terms relating to Fairy Lagoon.

Figure 2 Definition of Terms
1.7 Policy Statement

The Fairy Lagoon Entrance Management policy seeks to provide Council and the community with a detailed procedure for the short and long term management of the Fairy Lagoon entrance.

This policy will be implemented by Wollongong City Council in consultation with the appropriate State Government Departments.
2. BACKGROUND

Fairy Lagoon is at the southern end of Fairy Meadow Beach, within the northern region of the Wollongong LGA. Fairy Lagoon is defined as an Intermittently Closed or Open Lake or Lagoon (ICOLL). ICOLLs are shallow coastal water bodies that are connected intermittently to the ocean.

Fairy Lagoon is typical of many intermittently opening south coast lagoons:

- It is often closed to the sea by a sand bar. Lagoon openings tend to only last a few weeks or months. Sand is deposited in the entrance area by coastal processes (wave and long shore drift action).
- The condition of the lagoon’s entrance will play a part in the character of the estuarine ecosystem including the composition of plant and animal species, water quality, and tidal and flooding characteristics.
- It is a popular tourist and recreation area; with tourist visits adding markedly during peak holiday periods to the baseline permanent resident visits.

The Fairy Creek system consists of a main lagoon body at approximately -0.6 m AHD (a maximum depth of around -2.5 mAHD) with a rock shelf control on the entrance thought to be at approximately 0 mAHD (or within the range 0-0.3 mAHD). Thus, the maximum scour is to approximately 0 mAHD when the entrance is fully open. A large portion of the Lagoon area (including the Towradgi Arm) is located above 0 mAHD and therefore when the entrance opens these areas become exposed and tidal.

The majority of the greater Fairy and Cabbage Tree Creek catchment is developed, with the exception of the escarpment and scattered patches of remnant vegetation. Increasing urbanisation of the catchment has been observed to have a negative effect on the condition of the Lagoon (Shiau, 1996; Lewis, 2003; Bell, 2006). Water and sediment quality monitoring for the greater Fairy Creek catchment has suggested that urbanisation is contributing to elevated levels of faecal coliforms, ammonia, phosphorus and nitrogen (Figgis, 2001). Nutrients (total nitrogen, Oxidised nitrogen, ammoniacal nitrogen, total phosphorus, filterable reactive phosphorus), faecal coliforms and chlorophyll-a within Fairy lagoon were also found to regularly exceed ANZECC (2000) trigger levels, which has been largely attributed to the effects of urban runoff (Lewis, 2003).

Under present levels of catchment urbanisation, Fairy Lagoon is receiving greater water input as a result of runoff from urbanised areas, as urbanised areas are far more impervious than natural vegetated areas.

The behaviour of the lagoon entrance can greatly impact on the water level, water quality and ecology of the lagoons. During extended periods of entrance closure and heavy rainfall, water levels within the Lagoon may pose a threat to assets, prompting substantial public pressure on Council to undertake mechanical openings of the Lagoon entrance.

2.1 Lagoon Behaviour

Opening

In the event of a flood with the entrance closed, at the start of the flood, water will build up behind the berm until water levels exceed the berm height. The flow will then exceed the berm and start to scour a channel which becomes progressively deeper and wider as the flood continues. The rate of increase in the channel depth and width will be affected by the ocean tide and wave conditions and the amount of rain that continues to fall in the catchment. Under fully open entrance conditions, the catchment flow would exit the lagoon solely controlled by ocean tide and wave conditions. With sand to scour, the rate of
discharge slows as the scouring process occurs. The greater the volume of sand to scour, the longer it takes, except under relatively rare catchment flood conditions.

The breakout frequency for Fairy Lagoon was assessed from water level time history data. It was found that between 1985 and 2003 annual breakout frequency varied between 2 and 14 times per year, with an average of 7 breakouts per year (Lawson & Treloar, 2005). Between 2000 and 2003, the entrance was observed to remain open for an average of 24.5 days following breakout (Bell, 2006). During periods of open entrance tidal exchange can occur between the Lagoon and the Ocean. Analysis of water level data by Lawson & Treloar (2005) indicated that approximately 50% of breakouts were followed by tidal exchange.

Water Levels

The water level within ICOLLS, such as Fairy Lagoon, is generally influenced by inflows and outflows including rainfall, runoff, evaporation, ocean overtopping, the level of the berm where the lagoon breaks out to the sea and percolation losses through the dune barrier and the entrance berm.

At water levels below 2 mAHD the water level within Fairy Lagoon increases rapidly in response to catchment runoff. Above 2 mAHD the estuary storage characteristics alter and the storage increases fairly significantly without a significant increase in water level (Cardno Lawson Treloar, 2007).

Berm height plays a very important role in determining the maximum water level reached in Fairy Lagoon. Lawson & Treloar (2005) estimated the maximum berm height likely to be 1.71m AHD based on water level gauge water level data between 1985 and 2003.

Ocean Flooding

The level of ocean at any point in time is subject to the following factors:

- Astronomical Tide
- Barometric Pressure
- Wave/Wind Setup
- Wave Runup
- Medium Term Sea Level Variations (e.g. those associated with climate change)

The maximum water level associated with oceanic inundation at the Fairy Creek water level station (Bodes Bridge) between 1985 and 2003 was 1.38 mAHD. Thus the 20 Year ARI ocean design level (2.4m AHD, GHD, 1989) has not been exceeded inside the Lagoon since measurements began. Note that if the berm was closed and the berm level is above 2.4m at the time, then the elevated ocean levels would have no effect on the Lagoon level.

The estimated 100 Year ARI ocean level for the study area is 2.7 mAHD. GHD have divided this into 1.6 mAHD for tidal, barometric and wind setup components, +0.8m for wave setup and +0.3m for climate change sea level rise for a 50 year planning period. GHD (1989) have also estimated a 20 Year ARI ocean level of 2.4 mAHD.

Flushing

A 1 Year ARI design storm (24 hour duration) will produce a volume of nearly 6.5 times the volume of the estuary if the berm is at a height of 1.85m AHD. This multiple will be even greater if the level of the berm is below 1.85 mAHD. This volume of flow will result in a significant displacement of any water held in the estuary at the commencement of the event. This indicates that in the absence of complex hydrodynamic features, complete displacement of the estuary volume is likely to occur in relatively frequent storm events.
Issues such as eutrophication (measured via consideration of the frequency of algal blooms) commonly associated with limited flushing of estuaries, is therefore likely to be influenced by this frequent displacement of the volume of flows entering the estuary.
3. ALTERNATIVES FOR ENTRANCE MANAGEMENT

3.1 Community Feedback

Council sought community feedback on the options available for entrance management, described below. The full details are provided in the Submissions in Reply Report (Wollongong City Council, 2007) (Wollongong City Council, 2007). Three entrance management options have been identified, they include:

- The “do nothing” approach,
- Assisted opening, and
- Berm height management.

A summary of these approaches is provided below. Additional details are provided in the accompanying REF (Cardno Lawson Treloar, 2007).

For the reasons explained below, the Do Nothing Approach is not considered to be a feasible option. Details have also been provided for the Berm Height Management Option. However, the Berm Height Management Option was not preferred because of the relative expense and high labour requirements. Assisted opening, or Mechanical Breakout, has been recommended as the preferred approach based on the comments in the Submissions in Reply Report (Wollongong City Council, 2007). Full details are provided in that report.

3.2 Do Nothing Approach

The intention of this approach is to allow the lagoon to open with no assistance. However, the consequences of adopting this approach include the potential to result in nuisance flooding of numerous residential properties (yard and overfloor flooding) and the flooding of local infrastructure (such as Squires Way). However, based on recent observations (particularly following the severe floods of 1998 and 1999), it is expected that in the absence of intervention, an unassisted opening is likely to result in intervention by concerned residents as flood waters rise would take it upon themselves to open the entrance manually.

The impact of not having an adopted entrance management policy is twofold. Firstly, there will be a public perception that both private and public assets are not being adequately protected by Council from flooding. As outlined above, this may result in illegal opening of the lagoon. This could potentially result in the lagoon being mechanically opened more frequently than if an entrance management policy was in place. This could have negative impacts on lagoon ecology and recreational uses.

The “do nothing” approach is largely inconsistent with assumptions made in the design flood assessments for Fairy Creek (WBM / Bewsher Consulting, in preparation). Further details are provided in Section 4.7.

3.3 Mechanical Breakout

The modification of the Fairy Lagoon entrance system and the modification of the local catchment through the process of urbanisation has altered the natural (Pre-European) opening conditions. Given the flood risks to property and infrastructure in the Fairy Lagoon floodplain, the entrance may need to be mechanically opened from time to time. The advantage of an Entrance Management Policy, is that it provides certainty for all affected stakeholders and the wider community of when, where, how and under what conditions Fairy Lagoon will be mechanically opened.
The lagoon entrance would be opened only when a pre-defined set of criteria are met. These criteria include a ‘trigger’ lagoon water level and berm height coupled with the prediction of continuing rainfall and therefore an expected further increase in lagoon water levels. There would also be an emergency ‘trigger’ level which would result in immediate opening of the lagoon even if continuing rainfall is not predicted. This emergency level would be defined by the level of the lowest critical asset.

Once all the criteria are met, a mechanical breakout of the lagoon entrance is initiated. This would involve the deployment of equipment, such as a 4WD backhoe, to dig a ‘pilot’ channel (a narrow, shallow channel to facilitate the commencement of outflow from the Lagoon). Details of the means of access of equipment to the beach are outlined in Section 3.5. The pilot channel would be approximately 1m wide and to a depth such that the base of the pilot channel meets the lagoon water level. Once the pilot channel has been created, the machinery is removed from the beach and water in the lagoon will start to flow through the pilot channel, the flow will increase as it scours the channel deeper and wider. The mechanism of the scour process is natural from this point onwards, driven by ocean tidal behaviour and catchment inflow. This generally results in a three phase process, taking of the order of 4 - 6 hours and is described in Gordon (1981 and 1990).

3.4 Berm Height Management

The berm height at the entrance of the lagoon can be managed such that it does not exceed a pre-determined level. This is sometimes known as maintaining a ‘dry notch’ (i.e. a low or ‘saddle’ point in the beach adjacent to the entrance which the Lagoon can preferentially flow across). The purpose of the notch is to dispense with the need to mechanically open the Lagoon when a flood arrives. If maintained correctly, the notch would breach without intervention when the Lagoon water level reaches the appropriate level. The flow from the Lagoon to the ocean will increase as it scours the channel deeper and wider (i.e. the same three phase process described above by Gordon, 1981 and 1990).

Managing the berm height to sustain the presence of the ‘dry notch’ would involve regular monitoring of the berm height via regular survey and/or the use of observation height markers. A combination of lagoon water levels and volume of the overall sand berm would be considered to determine if a berm ‘shaping’ to maintain the notch is required. The ‘shaping’, potentially to be undertaken on frequent basis (i.e. of the order of monthly or bi-monthly dependent on coastal processes), would be undertaken using some form of sand moving machinery, such as a bulldozer or excavator. As part of the ‘shaping’ process, the required depth of sand would be moved from the entrance to a location on the beach (close to the entrance) and spread out to ‘match in’ with the existing beach profile such that the sand remains in the beach system.

Berm height management would be expected to involve more frequent access of machinery onto the beach than the mechanical opening approach (Section 3.3). Therefore there may be increased impacts associated with access and machinery. A formalised access path (Section 3.5) would be required to limit the erosion impacts on the bank. Under the mechanical breakout option, a less formal access path may be suitable.

3.5 Access Path Alternatives

In addition to the feedback provided on the alternatives outlined above, the Submissions in Reply Report (Wollongong City Council, 2007) also provided Community feedback on the alternatives available for the access path that will be used by machinery accessing the beach. To prevent erosion of the banks of the Lagoon and the coastal dune system, and to minimise the generation of sediments being delivered to the lagoon, an access path of some form will be required for the Mechanical Breakout option (Section 3.3).
Several alternatives have been assessed for the proposed access path, which are described in the REF (Cardno Lawson Treloar, 2007):

- The installation of an ‘inlaid rubber grid’, a proprietary product, for the grassed portions of the access path would allow for turf to grow within or on top of the pavers. The use of such products would minimise erosion impacts associated with the movement of machinery. Additionally, this would minimise fragmentation by allowing the growth of grasses, and would reduce any visual impacts. Such a product would have to be used in tandem with a flexible plank decking, similar to that used for sand dunes, where sand is encountered on the access path.

- Another option for stabilising and defining the access path is to implement a formal gravel access path for 4WD backhoes to gain access to the entrance area of the Lagoon. This option would help minimise disturbance of the southern bank of Fairy Lagoon associated with the movement of machinery. This will most likely take the form of a gravel-based path, lined with geofabric, with a base of approximately 200 – 300mm deep. Concerns associated with this form of path include the fragmentation of riparian vegetation and visual impacts.

- It may be possible to use a transportable access stabilisation product. This would also help minimise erosion and avoid fragmentation. This would involve the use of a portable rubber stabilisation structure that can be rolled out prior to machinery accessing the Lagoon entrance, to protect sensitive areas. The main issue associated with the use of a portable temporary structure is that it may take time to set it up. This will be an issue during mechanical breakout, as the process of laying out the temporary structure will be time consuming, and water levels may be rising rapidly.

Concerns were documented in the Submissions in Reply Report (Wollongong City Council, 2007) regarding formalisation of a designated access path. As outlined above, the major concern with not creating a formalised access path for machinery to use during mechanical opening of the Lagoon is that there will be increased erosion of the banks of the Lagoon, as there will be no stabilised, designated access route, which may result in machinery using several entrance and exit points, spreading the risk of erosion. In addition, the mechanical breakout activity is time critical. Therefore, a transportable access stabilisation product is not recommended. A permanent access point alleviates this time pressure. With these concerns in mind, the grassed inlaid rubber grid may be the preferable option for the access point. However, a formal access path is not necessary for the policy to be implemented. This matter may be considered by Council and clarified at a later date.

The access point, as indicated in the Figure provided in Attachment C, has been located next to the stormwater drain as an informal access point already exists at this point and it is the most direct line of access. Anecdotal evidence provided in the Submissions in Reply Report (Wollongong City Council, 2007) suggests that the area to the west of the stormwater drain is consistently under water, and so access has been located to the south-east of this stormwater drain. However, it is noted that the dune can form a relatively steep grade at this point and it may require regrading before access can occur down to the beach. Alternative sites were dismissed due to their impacts on recreational infrastructure, distance from the entrance and safety concerns.
4. DETERMINATION OF TRIGGER LAGOON WATER LEVEL

4.1 Inundation

The inundation experienced by the land surrounding Fairy Lagoon (including Fairy Creek, Cabbage Tree Creek and the Towradgi Arm) varies with increased lagoon levels. Inundation extents were assessed for a range of lagoon levels (1.4 mAHD to 3 mAHD). The Policy is unlikely to select a trigger level greater than 2 mAHD (due to the level of Squires Way). Therefore, the inundation extents for lagoon levels of 1.6 mAHD, 1.8 mAHD and 2 mAHD are shown below in Figure 3 to provide a representation of various inundation extents. It can be seen that the greatest inundation extent occurs in the vicinity of Fairy Creek, in particular within the Illawarra Live Steamers site.

Figure 3 Selected Lagoon Inundation Extents
A review of the potential inundation extents would suggest that a trigger level of 1.6 mAHD would be the most desirable. At this level some property inundation occurs. However, the majority of residential properties are protected and none of the buildings in the Live Steamers site are impacted.

4.2 Asset Assessment

A detailed asset assessment is provided in the accompanying Review of Environmental Factors (Cardno Lawson Treloar, 2007). The outcome of this assessment found that the inconvenience of inundation to a level of 1.6 mAHD could be tolerated. No access roads or floor levels would be impacted upon at this level and only property inundation would be experienced. Inundation up to approximately 1.8 mAHD could also be tolerated for a short time. However, due to the rate of rise of lagoon water levels during a rainfall event, this level would very quickly be exceeded and assets may be impacted. A trigger level of 1.6 mAHD allows for a slightly longer response time. This issue is discussed further in Section 4.5.

It is assumed that services and infrastructure such as underground cables and pipe networks would have been designed to withstand any groundwater pressure as a result of lagoon levels of 1.6 mAHD.

4.3 Historic Water Levels

A water level gauge has been operated on the downstream side of the Princes Highway (Bodes Bridge) at Fairy Creek since October 1985. An analysis of water level data from Fairy Creek indicates that a water level has ranged from 0.41m AHD to 4.12m AHD during the 18 year monitoring period (Lawson and Treloar, 2005).

4.4 Recreation

Fairy Lagoon has a high recreational value to the local community and to visitors to the area. Land-based recreational facilities impacted by lagoon inundation have been assessed as part of the assets assessment in Section 4.2 and described in more detail in the REF. There are also a number of water-based recreational activities within Fairy Lagoon, such as kayaking, canoeing and small boat sailing. These activities require the Lagoon to have sufficient depth to facilitate the activities.

The average bed level in the Lagoon is approximately -0.6 mAHD. If it is assumed that water-based recreational activities require a minimum depth of approximately 1.5 metres, it would be undesirable to undertake a mechanical breakout at less than 0.9 mAHD. If the trigger level for Fairy Lagoon were to be set at this value, the recreational value of the lagoon would be expected to be significantly reduced.

To maximise recreational values the trigger level should therefore be greater than 0.9 mAHD.

4.5 Rate of Rise

Due to the nature of the catchment and rainfall patterns in the area, the rate of rise within the lagoon is relatively high. This means that during a rainfall event the lagoon level would be significantly higher than the trigger level by the time a mechanical breakout had occurred.

The typical rate of rise for Fairy Lagoon for a 1 year ARI catchment runoff event was calculated using catchment size, rainfall intensity on the catchment, runoff and the lagoon volume (varies with depth).
Based on a bathymetric analysis and a review of the character of the 24 hour duration (the critical duration for volume) for the 1 Year ARI design event, the rate of rise, once the lagoon levels exceed 1.3 mAHD, is on average 0.35 m/hr. This value is higher at lower levels due to the limited lagoon storage capacity. At high lagoon water levels, the water spreads out into the wider floodplain area, allowing a greater volume of water to be stored, thereby lowering the rate of rise. When lagoon water levels exceed 1.7 mAHD the rate of rise increases due to bank steepening and confinement. This process occurs from 1.7-2.0 mAHD. After the water level has reached 2.0 mAHD a decrease in the rate of rise would be expected. It is important to note that the floodplain extent utilised for this purpose did not extend beyond 2.0 mAHD. The rate of rise at various lagoon water levels above 1.3 mAHD is shown below in Figure 4.

![Rate of Rise](image)

Figure 4 Rate of Rise of Fairy Lagoon Levels

The high rate of rise within the lagoon indicates the need to ensure the selected trigger level allows for additional rise of lagoon levels before significant damages are experienced. It also highlights the need to establish an alert level which will indicate that lagoon levels may rise and reach the trigger level. This will allow additional time to mobilise machinery, if required.

Based on the Squires Way crossing level of 2.0 mAHD and inundation of the Live Steamers Site, the lagoon would need to be opened at a maximum 1.8 mAHD to protect these assets. If the rate of rise is 0.35 m/hr and two hour duration is required to initiate a mechanical breakout, the procedure to mechanically breakout would need to be initiated when the lagoon levels reached approximately 1.1 mAHD. This is not a practical level to initiate a breakout as water level records show that the lagoon water level is higher than 1.1 mAHD more than 15% of the time. However, it is assumed that water levels of up to 1.95 mAHD could be tolerated for short periods of time. As such, if heavy rainfall persists or is predicted a mechanical breakout should be initiated when water levels reach 1.3 mAHD. Water level records suggest that the lagoon is higher than 1.3 mAHD approximately 5% of the time.

It should be noted that the lagoon would only be at a level greater than 1.6 mAHD for a limited period of time (the time taken for the lagoon to drain back down to 1.6 mAHD).

A trigger level of 1.6 mAHD would allow for additional rise of lagoon waters before significant impacts occurred on private and public assets.
4.6 Ocean Levels

If ocean levels were greater than the trigger level and the Lagoon entrance was opened, ocean waters would flow into the lagoon, rather than the lagoon draining, and the lagoon level would rise. Therefore, an assessment has been undertaken of Highest Astronomical Tides (commonly referred to as King Tides), historical tide data and predicted ocean levels in storm conditions.

It should be noted that all ocean levels below are reported in mAHD, ocean levels for navigation purposes are often reported from the Lowest Astronomical Tide (LAT) which is approximately 1m below 0 mAHD, resulting in tide levels reported as 1m higher than those in mAHD.

The highest astronomical tide (HAT) or King Tide for the region is 1.17 mAHD. While HAT is the highest level of normal tides, inundation may exceed this level (e.g., during ocean storm surges). If the trigger level is set above this level, a king tide will not increase lagoon levels when the lagoon entrance is opened.

Due to the extensive data set from tide gauges such as Fort Denison (operational since the late 1880’s), recorded water levels can be reported in terms of the probability of exceedance of a specific level at some locations. For example, the water level that is exceeded for only 1% of the time at Fort Denison is ~1.0 mAHD. This level would also relate to ocean levels at Fairy Lagoon. As described above, if the trigger level is set above 1.0 mAHD, the ocean level will generally not increase lagoon levels if an assisted opening is undertaken.

The maximum water level associated with oceanic inundation at the Fairy Creek water level station (Bodes Bridge) between 1985 and 2003 was 1.38 mAHD.

The estimated 100 Year ARI ocean level for the study area is 2.7 mAHD. GHD have divided this into 1.6 mAHD for tidal, barometric and wind setup components, +0.8m for wave setup and +0.3m for climate change sea level rise for a 50 year planning period. GHD (1989) have also estimated a 20 Year ARI ocean level of 2.4 mAHD. These values are estimates for the beach, not within the lagoon. Wind and wave setup would not be able to propagate through the entrance at these same heights. Therefore, the resulting lagoon levels as a result of elevated ocean levels would be significantly lower.

An assisted opening will only be undertaken when ocean levels are below the lagoon levels.

4.7 Flood Study

The hydraulic modelling undertaken in Fairy Creek and Cabbage Tree Creek Flood Study (WBM, 2006), to determine flood planning levels within the study area, utilised a constant downstream boundary of 1.6 mAHD. A constant downstream boundary level of 1.6 mAHD was found to represent an “erodible” berm downstream boundary of starting berm height 2 mAHD. To ensure consistency with existing flood planning levels and Council flood planning, the trigger level must be no greater than 2 mAHD.

4.8 Berm Height

Berm height plays a very important role in determining the maximum water level reached in Fairy Lagoon. Lawson & Treloar (2005) estimated the maximum berm height likely to be 1.71m AHD based on water level gauge water level data between 1985 and 2003.
When the lagoon water levels exceed the berm height an unassisted opening is initiated. As such, if the berm height is not significantly higher than the trigger level, a mechanical breakout may not be necessary. A review of the inundation extent and asset assessments undertaken in the REF (Cardno Lawson Treloar, 2007) would indicate that a lagoon water level of up to approximately 1.7 mAHD could be tolerated for an extended period of time (of the order of several days). Levels higher than this could only be tolerated for a short period of time (less than 1 day).

It is therefore recommended that a berm trigger level of 1.7 mAHD should be incorporated into the opening procedure.

4.9 Trigger Level

It is recommended that under the current Fairy Lagoon Entrance Management Policy the Fairy Lagoon trigger level should be set at **1.6 mAHD**. Based on the fast response in lagoon water levels to rainfall in the catchment, it is also recommended that an alert trigger level should be provided; this level should be set at **1.3 mAHD**.

It should be noted that for an opening to occur the lagoon water levels should not only exceed 1.6 mAHD but rainfall must be falling in the catchment or be expected to fall, such that Lagoon levels will continue to rise, these conditions should also be coupled with a berm height level greater than 1.7 mAHD.

An emergency trigger level should also be set at **1.8 mAHD**. This emergency trigger level has been set to primarily prevent the inundation of the structures in the Live Steamers Site. Figure 15 in the accompanying REF (Cardno Lawson Treloar, 2007) indicates that 1.8 mAHD is the highest lagoon level that can be tolerated before the structures within the Live Steamers Site are inundated.

The emergency trigger level of 1.8 mAHD is a level at which the Lagoon should be opened even if no rainfall is predicted. The lagoon level may reach this level slowly e.g. through very small rainfall events or topping up of the Lagoon from ocean levels overtopping the berm. As such, the criteria for undertaking a mechanical opening may not be fulfilled. The emergency trigger level allows for the Lagoon to be opened even in dry conditions so that inundation of properties and assets does not occur over a protracted period of time.
5. LAGOON OPENING PROCEDURE

5.1 Lagoon Opening Decision Making

The logic behind this policy relates to the threat to flooding of private property and public assets if the lagoon entrance is closed and the water level reaches the threshold level of 1.6 mAHD and heavy rain occurs. An asset assessment for the study area is provided in the Review of Environmental Factors (Cardno Lawson Treloar, 2007). At levels below 1.6 mAHD, there is increased opportunity to plan an opening. As such, once water levels reach 1.3 mAHD and rainfall is predicted, monitoring of water levels is to be undertaken so that an opening can be planned for in the event of water levels reaching 1.6 mAHD.

The water level in the Lagoon is monitored at 15 minute intervals at Bodes Bridge and reported publicly at the following website:

It is important to note that while the data is regularly logged, the information on this webpage is normally only updated on a daily basis, usually between 4 – 6am.

Rainfall in the locality can be monitored via routine checks of the local rainfall gauge at Russell Vale. The data from this gauge is also reported publicly at the following website:

As for the water level data, it is important to note that the information on this webpage is normally only updated on a daily basis, usually between 4 – 6am.

As part of this policy, systems will be implemented to ensure an alarm is created in the monitoring system to send an automated fax or telephone a pre-registered list of telephone numbers (provided in Attachment A1) with a recorded message when the threshold levels have been exceeded.

- A “standby” message should be issued at 1.3 mAHD.
- An action or “go” message should be issued at 1.6 mAHD.
- A “no delay” message should be issued at 1.8 mAHD.

The “standby” alarm to be triggered when the level reaches 1.3 mAHD is to indicate to Council that an opening may be prudent and ensure that adequate resources are available to undertake an opening. The “go” alarm initiates the active opening procedure which includes a first phase of checking predicted rainfall in the catchment and berm elevations. Then, if necessary, the second stage of mechanically opening the entrance. The “no delay” alarm triggers an immediate opening of the lagoon, irrelevant of predicted rainfall or berm height.

This is consistent with the proposed flood planning assessments being undertaken for the Flood Study.

The following summarises conditions under which the lagoon entrance can be mechanically opened.

a. If the level of the lagoon reaches 1.8 mAHD it shall be opened as soon as conditions permit (see section 5.3 for a description of those conditions);

b. If the level of the lagoon reaches 1.6 mAHD and rainfall is continuing in the catchment or expected in the following 24 hours and the berm height is greater than 1.7 mAHD (to be determined from a marker to be placed at the entrance), the
entrance shall be opened on the top of the first available high tide without delay (details of rainfall prediction is provided below); or
c. When the lagoon reaches a level of 1.3 mAHD and heavy rain is predicted and water levels are likely to exceed 1.6 mAHD overnight, works staff shall be placed on standby to open the lagoon without delay.

There may be occasions when safety issues preclude a mechanical breakout proceeding, for example, during severe ocean storms.

It should be noted that the estimated time to mobilise a 4WD backhoe and operator is of the order of one hour during business hours and two hours during non-business hours.

Predicted rainfall patterns can be accessed via the following Bureau of Meteorology (BOM) web pages:

Example of Data found on this website:

SOUTH EAST DISTRICTS FORECAST

Issued at 5:15am on Friday the 8th of December 2006

For the period through to Monday

ILLAWARRA

Warning summary

Forecast for Friday

Morning drizzle patches on ranges then fine and partly cloudy day. Mild. Northeast to southeast winds.

Wollongong : Mostly fine, partly cloudy. Max: 23
Hawra : Mostly fine, partly cloudy. Max: 24
Howra : Mostly fine, partly cloudy. Max: 25

Forecast for Saturday

Early drizzle patches then fine. Mild. Light to moderate east to northeast winds.

Wollongong : Mostly fine, partly cloudy. Min: 15 Max: 24

Forecast for Sunday

Fine. Warm day. Fresh north to northeast winds.

Wollongong : Fine. Min: 16 Max: 26

Forecast for Monday

Fine day. Isolated afternoon showers and thunderstorms more likely in the south. Warm to hot day. Fresh north to northeast winds ahead of a late southerly change.

Wollongong : Chance afternoon shower/thunderstorm. Min: 17 Max: 31
Example of Data found on this website:

![128km Sydney Radar](http://mirror.bom.gov.au/products/IDR033.shtml)

The berm height is to be estimated using a pole with level marker showing gradations from 1.0 mAHD upwards. The pole shall be driven down below the scour depth and shall be placed away from middle of the berm so that it is not scoured out during lagoon opening. The suggested location of the pole is indicated in the Figure in Attachment C. The pole can be used to ‘eye in’ the berm height, taking account of the saddle in the berm. This method only provides an indicative measure of berm height.

Once a decision has been made to undertake a mechanical breakout, advice to DPI (NSW Fisheries), DECC and the local media should be issued advising of the breakout with details of the opening (including proposed timing and reasons for opening) and of potential health impacts on recreational swimmers on the adjacent beach areas for the following three days (a list of contacts is provided in Attachment A2). Failure to notify the public about the health and safety hazards could result in Council being liable for any incidents.

A flowchart summarising the decision-making process is provided as Attachment B.
5.2 Responsibility for Opening

Wollongong City Council is responsible for lagoon opening, should intervention be necessary. The Council officer responsible for carrying out specific on site assessment in accordance with the REF (Cardno Lawson Treloar, 2007), consultation and any subsequent decision to open the lagoon (as per Attachment B) is the Floodplain Strategy Manager. This officer will also be responsible for the monitoring function detailed in Section 5.4 and Attachment D.

The Council officer responsible for plant management and on-site control is the Division Engineer – Central Depot. The procedures and assessments outlined in this document, including a copy of Attachment C showing the entrance location and copies of the entrance monitoring sheet (Attachment D), will be made available to the Division Engineer – Central Depot to ensure the opening is made in the correct location and to the dimensions required.

5.3 Procedures

Once the decision has been made to undertake a mechanical breakout, the following breakout procedure should be undertaken.

1. The procedure is to be planned so that where possible the actual opening of the lagoon occurs shortly after the tide turns from high to low, for the lower tide of the day (given the diurnal nature of the tides).

2. Opening should not be undertaken if wave conditions are dangerous i.e. if $H_{1/3}$ is greater than 4m. Wave heights can be accessed at http://www.bom.gov.au/marine/waves.shtml.

3. A mechanical opening should only be undertaken when high tides are predicted to be less than the lagoon levels. Ocean tide information in the form of predicted tides can be accessed at http://www.mhl.nsw.gov.au/www/sydp_tide.html - note that the datum for this prediction is ISLW not AHD).

4. The Figure provided in Attachment C shows the recommended access point for the 4WD backhoe operator to access the beach and the recommended orientation of the excavated channel and location of the material excavated from the pilot channel. The location and orientation of the recommended pilot channel has been selected by considering available historical data from Council. White pole markers must be placed in Puckeys Estate to direct the 4WD backhoe operator as to the most appropriate pilot channel location and orientation.

5. The opening should be sufficient for scouring flow to develop (i.e. with a velocity of greater than 0.4 m/s). The 4WD backhoe operator is to dig a 'pilot' channel from the ocean-ward end toward the lagoon approximately a bucket-width wide (commonly 1m or less) with the bed graded to the ocean. The last section of the channel (at the lagoon end) should be opened at the time of the next possible high tide (i.e. the highest possible tide of the day). (Ocean tide information in the form of predicted tides can be accessed at http://www.mhl.nsw.gov.au/www/sydp_tide.html - note that the datum for this prediction is ISLW not AHD). Initiation of a breakout at this time is likely to result in the most effective and sustained mechanical breakout due to the increasing head difference through the course of the breakout.

6. Where access to the internet is not available (due to power loss associated with a storm event), checking of a water level marker (a 'tide board') at a visible location from Squires Way (to be installed on the upstream side of Squires Way) should be undertaken.

7. The volume of sand to be excavated for the pilot channel is expected to be small. This sand will be retained on the beach and may be washed into the channel as it expands laterally. The location for placement of the excavated sand is shown on the Figure provided in Attachment C. Excavated sand is not to be removed from the beach area.
8. Possible contamination of adjacent surf beaches should be considered while the lagoon is emptying, for at least the first 3 days. Appropriate action should be taken to protect public health and safety at the site while excavation equipment is operating.

5.4 Entrance Monitoring

5.4.1 Mechanical Breakouts

When mechanical openings have been carried out, monitoring of the entrance should be undertaken to determine the efficiency of the opening and for use in a possible future flood study. Council’s Floodplain Strategy Manager will be responsible for this monitoring function.

For each opening attempt, the following data will be recorded:

- level of lagoon prior to opening
- date and time of opening
- location and length of excavation
- approximate width and depth of channel
- ocean swell conditions (wave height and direction)
- preceding rainfall
- date of closure and cause
- digital photographs.

If possible, photographs at later time intervals after breakout initiation has occurred are to also be captured, at least until the lagoon has emptied such that tidal conditions prevail.

If possible, an estimate of depth and peak flow velocity coincident with ocean low tide should be made; photographs of the water surface should also be made at each time interval. Comment should be made on apparent depth, velocity and width variations along the channel.

The information is to be recorded on a standard monitoring sheet (Attachment D).

It is also recommended that monitoring currently being undertaken by Wollongong City Council continues, and that monitoring plan recommended in the Further Processes Study (CLT, 2005b) be implemented (See Appendix D of the REF, Cardno Lawson Treloar, 2007). This monitoring plan is to be supplemented with the monitoring requirements provided in Table 1.

5.4.2 Unassisted Breakouts

Monitoring will also include unassisted breakouts, where possible, recording the prior lagoon level, time and date of opening, the date of lagoon closure, and any other relevant comments. Responsibility for monitoring lies with Wollongong City Council. The information is to be recorded on a standard monitoring sheet (Attachment D), which is to be completed for every entrance opening, whether mechanical or unassisted.

As part of this policy, systems will be implemented to ensure an alarm is created in the monitoring system to send an automated fax or telephone a pre-registered list of telephone numbers (provided in Attachment A1) with a recorded message when the threshold levels have been exceeded. These contacts will also be notified by an automated fax when an unassisted breakout has occurred. This will be identified by a sudden drop in lagoon levels over a short period of time.
5.5 Entrance Berm Clearance

The berm height and depth at Fairy Lagoon entrance may build up to such a volume that a mechanical breakout would be hindered and the length of time it would take to open the entrance would be substantially increased. Due to the high rate of rise experienced in and around Fairy Lagoon, the increased time to undertake a mechanical breakout may result in significant inundation and damages incurred around the Lagoon.

Therefore, it may be necessary on an infrequent basis to undertake an entrance berm clearance. Entrance berm clearance would involve the redistribution of built up sand from the entrance to the surrounding beach area. This would increase the likelihood of an unassisted breakout and reduce the amount of time required to undertake a mechanical breakout.

The decision to undertake a major entrance berm clearance project will be undertaken by Council’s Floodplain Strategy Manager after conferring with:

- Department of Natural Resources (now the Department of Environment and Climate Change (DECC)),
- Department of Primary Industries (NSW Fisheries) (some functions now fall under DECC),
- Department of Environment and Conservation (now DECC),
- The Estuary Management Committee, and
- The Floodplain Risk Management Committee.

This decision will only be made after reference to information provided through the lagoon monitoring system and by acquisition of berm and bathymetric survey.

Entrance berm clearance operations are a major capital project cost to Wollongong City Council and require inclusion in a Capital Works Budget prior to the consideration of such operations.

Essential considerations prior to the initiation of an entrance berm clearance operation:

- Recorded data and/or field observations indicate that the number of entrance berm openings is decreasing to consistently less than 3 openings over a period of six (6) months.
- The lagoon berm volume (i.e. depth and/or height) is considered of sufficient size such that time taken to undertake natural or mechanical breaching of the entrance berm would be increased to such a degree that the additional risk to private property and public assets would be considerable.

The following conditions are desirable to enable a successful entrance berm clearance operation, but not essential:

- Mechanical closure of the entrance may be required if a breakout occurs during a clearance operation.
- The entrance berm clearance operations should be conducted in the winter months, to minimise disruption to the recreational users of the Lagoon, Lagoon entrance and beach areas.

A separate REF and relevant consultation would be required if entrance berm clearance works are to be undertaken.
6. SUMMARY OF ENVIRONMENTAL ISSUES AND RECOMMENDED SAFEGUARDS

A summary of the proposed safeguards is provided below.

<table>
<thead>
<tr>
<th>Environmental Issues</th>
<th>Recommended Safeguards</th>
</tr>
</thead>
</table>
| **Geology, Soils and Topography** | • An ESCP would be prepared and implemented for the construction of the access path in accordance with *Managing Urban Stormwater – Soils and Construction* (the Blue Book) (NSW Department of Housing, 2004) as part of the Contractors Environmental Management Plan (CEMP) for the site and approved by Council’s Superintendent before works commence.
• Regular inspection of the work site would be undertaken for the duration of construction of the access path to ensure that the ESCP is implemented and maintained.
• An assessment of acid sulfate soils within the proposed route for the access path should be undertaken prior to construction. |
<p>| Climate | • The impacts of sea level rise on berm location should be assessed during subsequent Entrance Management Policies. |
| Water Quality | • Monitoring of water quality as recommended by CLT (2005b) (Appendix D) to assess the impact of the Entrance Management Policy. |
| Assets | • Implementation of the Entrance Management Policy |
| Lagoon Ecology | • Implementation of monitoring programmes as recommended in CLT (2005b) to assess the impact of the Entrance Management Policy upon flora, fauna and important habitats such as seagrass beds riparian vegetation, mangroves and wetlands (Appendix D). |</p>
<table>
<thead>
<tr>
<th>Environmental Issues</th>
<th>Recommended Safeguards</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commercial and Recreational Fishery</td>
<td>• Monitoring of commercial and recreational fish species, which could be incorporated in the monitoring of aquatic fauna.</td>
</tr>
<tr>
<td>There is a need to gauge the impact of the proposed policy on commercial and recreational fish species within the Lagoon.</td>
<td></td>
</tr>
<tr>
<td>Tree Failure</td>
<td>• Monitoring of trees that have potential for tree failure could be incorporated in monitoring for erosion and sedimentation that have been recommended in CLT (2005b).</td>
</tr>
<tr>
<td>Trees fringing on the banks of Fairy Lagoon have the potential to pose a hazard.</td>
<td></td>
</tr>
<tr>
<td>Air Quality</td>
<td>• The generation of exhaust particle dust would be minimised during the construction of the access path and assisted breakout of the Lagoon by using well maintained machinery and operating in an efficient manner.</td>
</tr>
<tr>
<td>Minor localised air quality issues associated with the operation of machinery for the construction of an access path may occur.</td>
<td></td>
</tr>
<tr>
<td>Noise and Vibration</td>
<td>• Construction of the access path should take place during winter when recreational use of the area will be lowest.</td>
</tr>
<tr>
<td>Minor noise and vibration impacts may be experienced during the construction of the access path.</td>
<td></td>
</tr>
<tr>
<td>Indigenous Heritage</td>
<td>• An indigenous heritage assessment for the proposed access path should be undertaken prior to construction.</td>
</tr>
<tr>
<td>Several known indigenous heritage items are located within areas surrounding Fairy Lagoon. Construction of the access path may disturb such items. Additionally, if the proposed policy was to lead to increased erosion, this may result in the exposure of indigenous heritage items within the Lagoons banks.</td>
<td>• Erosional impacts upon the Lagoon banks should be incorporated into the erosion and sediment monitoring recommended in CLT (2005b).</td>
</tr>
<tr>
<td>Non-Indigenous Heritage</td>
<td>• No specific requirements.</td>
</tr>
<tr>
<td>Hazards</td>
<td>• Signage should be erected warning pedestrians and motorists during both the construction works and an assisted breakout.</td>
</tr>
<tr>
<td>Large machinery may pose a hazard to pedestrians and motorists using Stuart Park and its facilities during the construction of the access path and assisted opening of the Lagoon.</td>
<td></td>
</tr>
</tbody>
</table>
7. PRELIMINARY COST ESTIMATE

The capital cost of implementing the Fairy Lagoon Entrance Management Policy is of the order of $36,000 and the recurrent cost of the works is of the order of $29,000/year. Presuming a discount rate of 7% and a life of the works to be 50 years the net present value of the policy is approximately $436,222.

A breakdown of the estimated costs is shown in Table 2.

<table>
<thead>
<tr>
<th>ITEM</th>
<th>DESCRIPTION</th>
<th>UNIT</th>
<th>RATE $</th>
<th>QUANTITY</th>
<th>AMOUNT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capital Costs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Establishment of water level alarm system, with automated messaging</td>
<td>Item</td>
<td>3,000</td>
<td>1</td>
<td>$ 3,000</td>
</tr>
<tr>
<td>2</td>
<td>Establishment of pole marker to determine berm height</td>
<td>Item</td>
<td>500</td>
<td>1</td>
<td>$ 500</td>
</tr>
<tr>
<td>3</td>
<td>Establishment of local benchmark for 4WD backhoe operator</td>
<td>Item</td>
<td>2,000</td>
<td>1</td>
<td>$ 2,000</td>
</tr>
<tr>
<td>4</td>
<td>Establishment of pole markers at Puckeys Estate to Guide 4WD backhoe</td>
<td>Item</td>
<td>500</td>
<td>2</td>
<td>$ 1,000</td>
</tr>
<tr>
<td>5</td>
<td>Establishment of access path for 4WD backhoe</td>
<td>Item</td>
<td>18,750</td>
<td>1</td>
<td>$ 18,750</td>
</tr>
<tr>
<td>6</td>
<td>Establishment of monitoring and reporting processes with Works Division</td>
<td>Item</td>
<td>2,000</td>
<td>1</td>
<td>$ 2,000</td>
</tr>
<tr>
<td>GST (10%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$ 2,725</td>
</tr>
<tr>
<td>Contingency (20%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$ 5,995</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$ 35,970</td>
</tr>
</tbody>
</table>

Approximately $ 36,000

<table>
<thead>
<tr>
<th>Recurrent Costs (Annual)</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4WD backhoe Mobilisation and Labour</td>
<td>Item</td>
<td>2,000</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>Observations of Entrance Before and After Mechanical Breakout and Transfer to Lagoon Book</td>
<td>Item</td>
<td>500</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>Contact with DECC and DPI</td>
<td>Item</td>
<td>100</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>Contact with Community and Media to advise of beach swimming restrictions</td>
<td>Item</td>
<td>500</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>Ongoing costs associated with water level alarm system</td>
<td>Item</td>
<td>1,000</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>Two attendants/observers to accompany 4WD backhoe</td>
<td>Item</td>
<td>1,000</td>
<td>5</td>
</tr>
<tr>
<td>GST (10%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contingency (20%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Approximately $ 29,000
8. RECOMMENDATIONS

8.1 Infrastructure and Monitoring Systems

The following infrastructure and monitoring systems should be implemented as part of this Policy:

- Council should contact DNR (now DECC) to have an alarm system, with automated messaging, developed and activated.
- A water level marker should be placed at a visible location from Squires Way (to be installed on the upstream side of Squires Way). This will assist with determining water levels in the event of a mechanical breakout if access to the internet is lost. The water level marker should also be accompanied by clear signage which outlines this Policy and the marker should have a clear mark at 1.6 mAHDI (the trigger level). This will inform residents of the Policy and the level at which Council will undertake a mechanical breakout.
- White pole markers should be placed in Puckeys Estate to direct the 4WD backhoe operator to the most appropriate pilot channel location and orientation. These should be constructed from fairly sizable poles with a diameter greater than 20cm and the top half of the poles painted white. The two poles should be located relatively close to each other to minimise disturbance on surrounding area. Where the poles are located in an open space they may be integrated for community education (e.g. with flood levels or decorative information). The size of the poles is intended to prevent vandalism.
- A berm height pole is to be established upstream of the stormwater drain near the lagoon entrance. This berm height pole will be marked with increments greater than 1 mAHDI and can be used to “eye in” the berm height, taking into account the saddle of the berm. This method provides an indicative measure of berm height only.

8.2 Review and Update of This Policy

This Policy and the associated REF (Cardno Lawson Treloar, 2007) should be reviewed every five years or in response to legislation changes. Review of the policy will include analysis of all monitoring data collected over that period to ensure that predictions and assumptions outlined in the current REF (2007) are correct. Also included will be a review of the intervention level in relation to infrastructure present at that time. As outlined in the REF, implementation also involves Wollongong City Council investigating and, where possible, implementing measures to progressively remove, relocate or otherwise treat items of low-lying infrastructure so that it no longer represents a constraint and the intervention level can be progressively raised. As such, if any of the assets listed in the REF are removed or modified, the intervention level will be amended accordingly.

There were some data sets which were not available during the preparation of this Policy. The following data sets should be collected for use in the review and update of this Policy:

- Floor Levels for structures in the Live Steamers Site.

8.2.1 Climate Change

The impact of climate change should be assessed in subsequent reviews of the Entrance Management Policy.

Engineers Australia (2004) provide an engineering estimate for projected sea level increases as a result of the ‘greenhouse effect’ to 2100 with a central figure of 0.5 m (a range of 0.1 – 0.9 m). These estimates are produced from a range of scenarios. Engineers Australia (2004) also report a central projected sea level rise for a 20 year planning period (i.e. to 2030) to be of the order of 0.1 m.
The response of berm heights to sea level change has been discussed by Hanslow et al. (2003). In summary, it is believed that increased sea level will lead to beach recession, which will be accompanied by landward and upward movement of beach berms (Dean and Maurmeyer, 1983 and SCOR, 1991, referenced in Hanslow et al 2003). Therefore, climate change may result in berm height at the entrance Fairy Lagoon becoming progressively higher. The implications this has for the entrance management policy is that it will need to be receptive to such change if it may occur.

There are very limited quantitative studies to produce likely rainfall patterns under climate change scenarios. Hennessy et al (2004) considered events from the 1 in 5 year event through to a 1 in 40 year event for the whole of NSW for a 1 day event duration and a 3 day event duration and found that there are likely to be increases in 1 day event rainfall (~10%) out to 2070 in spring, summer and autumn and decreases in winter. This is less than the critical duration for the Fairy Lagoon floodplain and as such the estimates are not reliable for application to the study area. No other estimates relating to impacts on rainfall associated with climate change are available at this stage.

8.3 Options for Increasing Trigger Levels

At lake levels beyond 1.6 mAHD, there would be an expectation that natural breaching of the berm would be imminent, with a very small likelihood of Council intervention being required. The analysis of the maximum water levels at the Fairy Creek gauge further upstream at Flinders Street show that the maximum water level rarely exceeded 1.47 mAHD and the maximum berm height on record is 3 mAHD, recorded in 1955. Nonetheless, this policy investigates ways to progressively raise the intervention level beyond 1.6 mAHD.

The review of assets and asset levels within the Study Area indicates that most assets would allow for a higher lagoon level without causing significantly increased threat to assets and structures. However, there would be an increased impact upon property inundation.

The assumption made in the Fairy Creek and Cabbage Tree Creek Flood Study (WBM, 2006) should be given due consideration, as the Flood Study provides the basis for future planning controls such as flood planning levels. An assessment undertaken by DNR (now DECC) as part of the Flood Study adopted a beach berm with a 2 mAHD crest level, it was assumed that the lagoon level was also at 2 mAHD at the initiation of the assessment. Their assessment concluded that this condition corresponded to a fixed berm height of 1.6 mAHD. This condition was the basis for all design runs undertaken in the Flood Study. It can therefore be inferred that, unless the Flood Study and subsequent flood planning provisions is updated that 2 mAHD will be the upper limiting factor for future planning levels.

As discussed in Section 4.5, due to the nature of the catchment and rainfall patterns in the area, the high rate of rise within the lagoon is a significant factor in determining trigger levels for Fairy Lagoon. As such, any raising of the trigger level must take into consideration the rate of rise of the lagoon and the limited response time available during a rainfall event.

In terms of assets which would restrict an increased trigger level, the Squires Way Bridge and the Illawarra Live Steamers site would be the most limiting. The Squires Way Bridge is located at approximately 2 mAHD. Therefore without raising the bridge, a lagoon level of 2 mAHD or greater would have significant impacts on Squires Way. A lagoon level of 2 mAHD would also result in a significantly greater area of inundation, particularly of the Illawarra Live Steamers site and properties along Fairy Creek. Figure 5 shows the difference in the inundation extents in this area.
No floor levels were provided for the structures within the Illawarra Live Steamers site. Detailed survey of structure and infrastructure within the Live Steamers site may provide an indication of how impacted upon the assets are, with increase lagoon levels. This may provide cause to increase the trigger level slightly. However, the rate of rise along Fairy Creek will still limit any raising of the trigger level. However, if it is shown that the Live Steamers Site structures can tolerate a lagoon level greater than 1.7 mAHD for an extended period of time, the berm height trigger level may be increased from 1.7 mAHD. This may reduce the number of mechanical openings undertaken.

Figure 5 Comparison of 1.6 mAHD and 2 mAHD Extent in Fairy Creek
9. REFERENCES

Engineers Australia (2004) ‘*Guidelines for Responding to the Effects of Climate Change in Coastal and Ocean Engineering*’, The National Committee on Coastal and Ocean Engineering.

ATTACHMENT A1
FAIRY LAGOON ENTRANCE MANAGEMENT POLICY AUTOMATED CONTACT LIST – TRIGGER LEVELS EXCEEDED

An automated email, fax or telephone message should be sent to the contacts listed below via an alarm as part of the monitoring system.

- A standby message is to be issued when lagoon levels reach 1.4 mAHD.
- An action or “go” message is to be issued when lagoon levels reach 1.6 mAHD.

Division Engineer – Central Depot
Wollongong City Council (Works and Services)
Fax: (02) 4227 7815

Floodplain Strategy Manager
Wollongong City Council (Design)
Fax: (02) 4228 8153

Manager, Environmental Projects
Wollongong City Council
Fax: (02) 4229 9197

Co-ordinator Beach Services
Wollongong City Council (Recreation and Natural Resources)
Fax: (02) 4226 5140
ATTACHMENT A2
FAIRY LAGOON ENTRANCE MANAGEMENT POLICY CONTACT LIST –
DECISION TO OPEN THE LAGOON HAS BEEN MADE

Once the decision to open the lagoon entrance has been made, the following contacts should be
advised of the breakout with details of the opening (including proposed timing and reasons for
opening) and of potential health impacts on recreational swimmers on the adjacent beach areas for
the following three days.

Division Engineer – Central Depot
Wollongong City Council (Works and Services)
Fax: (02) 4227 7815

Floodplain Strategy Manager
Wollongong City Council (Design)
Fax: (02) 4228 8153

Co-ordinator Beach Services
Wollongong City Council (Recreation and Natural Resources)
Fax: (02) 4226 5140

Media Relations Officer
Wollongong City Council (Communications and Public Relations)
Fax: (02) 4227 7580

Communications and Public Relations Officer
Wollongong City Council (Communications and Public Relations)
Fax: (02) 4227 7580

Natural Resource Project Officer – Coasts and Estuaries
NSW Department of Natural Resources (now DECC)
Fax: (02) 4224 9651

Fisheries Conservation Manager – South Coast
NSW Dept. of Primary Industries (Fisheries)
Fax: (02) 4472 7542

Manager Illawarra
NSW DEC (EPA) (now falling under DECC)
Fax: (02) 4224 4110

Manly Hydraulics Laboratory
Fax: (02) 9948 6185

Catchment Impact Manager
Sydney Water
Fax: (02) 4223 3477

News Editor
Mercury
Fax: (02) 4221 2338 TEL: (02) 4221 2207
ATTACHMENT B

Entrance Opening Decision Making Flowchart
FAIRY LAGOON ENTRANCE MANAGEMENT POLICY

FAIRY LAGOON ENTRANCE OPENING DECISION MAKING FLOWCHART

Reference should be made to Manly Hydraulic Laboratory’s website for water level and rainfall data:

Reference should be made to the Bureau of Meteorology’s website for wave height data:

A. Lagoon Water Level Above 1.3 mAHD

Is heavy rain is predicted and lagoon water levels likely to exceed 1.6 mAHD overnight?

- YES

Is the berm height greater than 1.7 mAHD?

- YES
 - Urgent entrance opening to be carried out at the top of the first suitable high tide.
 - Carry out emergency (24 hour) consultation.

- NO
 - Monitor lagoon water levels and predicted rainfall patterns closely.
 - Lagoon water levels and rainfall should be monitored at least hourly as long as there is a continuing risk of water levels rise and/or rainfall.
 - If the lagoon water levels stabilise between 1.3 mAHD and 1.6 mAHD and no rainfall is predicted in the catchment, monitoring can be reduced to daily.

- NO
 - No mechanical opening required.
 - The lagoon will open when lagoon water levels exceed the berm height.

As long as lagoon water levels remain below 1.6 mAHD, decision-making process A applies. If levels rise above 1.6 mAHD decision-making process B applies (see next page).
B. Lagoon Water Level Above 1.6 mAHĐ

Is rainfall continuing in the catchment or expected in the following 24 hours?

YES

Is the berm height greater than 1.7 mAHĐ?

YES

Urgent entrance opening to be carried out at the top of the first suitable high tide.

Carry out emergency (24 hour) consultation.

NO

NO

Monitor lagoon water levels and predicted rainfall patterns closely.

As long as lagoon water levels remain below 1.8 mAHĐ, decision making process B applies. If levels rise to 1.8 mAHĐ, decision-making process C applies (see below). If levels fall to 1.3 – 1.59 mAHĐ decision making process A applies (see previous page).

C. Lagoon Water Level Above 1.8 mAHĐ

Urgent entrance opening to be carried out at the top of the first suitable high tide.

Carry out emergency (24 hour) consultation.

NOTE: 24 hour emergency consultation involves issuing advice to DPI (NSW Fisheries), DECC and the local media, advising of the breakout with details of the opening (including proposed timing and reasons for opening) and of potential health impacts on recreational swimmers on the adjacent beach areas for the following three days. A list of department contacts is provided in Attachment A.
ATTACHMENT C

Fairy Lagoon Entrance Opening Diagram
ATTACHMENT D

Fairy Lagoon Entrance Breakout Monitoring Sheet
FAIRY LAGOON ENTRANCE BREAKOUT MONITORING DATA SHEET

<table>
<thead>
<tr>
<th>Opening Date</th>
<th>Unassisted (U) or Mechanical (M)</th>
<th>Height of Dune (m)</th>
<th>Location of Breach</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Approximate Wave Height (m)</th>
<th>Approximate Wave Direction</th>
<th>Preceding Rainfall (mm)</th>
<th>Approximate Wind Direction</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Lagoon Water Level (mAHD) | Time | Channel

<table>
<thead>
<tr>
<th>Lagoon Water Level (mAHD)</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Length (m)</th>
<th>Width (m)</th>
<th>Depth (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial Breach</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ongoing Channel Development</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Full Breakout</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Closure Date

Additional Information

Note: Ongoing channel development should be noted at least hourly if possible.
FAIRY LAGOON ENTRANCE BREAKOUT MONITORING DATA SHEET (EXAMPLE)

<table>
<thead>
<tr>
<th>Opening Date</th>
<th>Unassisted (U) or Mechanical (M)</th>
<th>Height of Dune (m)</th>
<th>Location of Breach</th>
</tr>
</thead>
<tbody>
<tr>
<td>17 September 06</td>
<td>M</td>
<td>0.6m</td>
<td>Southern End of Berm</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Approximate Wave Height (m)</th>
<th>Approximate Wave Direction</th>
<th>Preceding Rainfall (mm)</th>
<th>Approximate Wind Direction</th>
</tr>
</thead>
<tbody>
<tr>
<td>1m</td>
<td>SE</td>
<td>12mm in preceding week</td>
<td>NE</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lagoon Water Level (mAHD)</th>
<th>Time</th>
<th>Channel</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Length (m)</td>
<td>Width (m)</td>
</tr>
<tr>
<td>Initial Breach</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.65</td>
<td>10:25 am</td>
<td>10m</td>
</tr>
<tr>
<td>Ongoing Channel Development</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.6</td>
<td>10:40 am</td>
<td>10m</td>
</tr>
<tr>
<td>1.4</td>
<td>11:30 am</td>
<td>15m</td>
</tr>
<tr>
<td>1</td>
<td>1:30 pm</td>
<td>15m</td>
</tr>
<tr>
<td>Full Breakout</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>4 pm</td>
<td>15m</td>
</tr>
</tbody>
</table>

Closure Date __20 October 2006__

Additional Information

Note: Ongoing channel development should be noted at least hourly if possible.